If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2-11=0
a = 2; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·2·(-11)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{22}}{2*2}=\frac{0-2\sqrt{22}}{4} =-\frac{2\sqrt{22}}{4} =-\frac{\sqrt{22}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{22}}{2*2}=\frac{0+2\sqrt{22}}{4} =\frac{2\sqrt{22}}{4} =\frac{\sqrt{22}}{2} $
| 54=5u+14 | | 4(5x-6)-3(6x+1)=0 | | (4x+30)/5=10 | | 3x+13+4x=180 | | 10f+14=7f+41 | | 4x-8+9x+3=11 | | x-(180-x)=44 | | 34=4u-14 | | z^2+9z+81/4=1+81/4 | | 14+2v=4v | | 20-8x+30-16x=90 | | 2200=22(p+40) | | 5.58-5.2/q=0.36 | | 8-3x=-34 | | 4u-13=35 | | 1128=6(19+x) | | 0.72s+7.07=24.64 | | 0.72 s+ 7.07=24.64 | | −3+4x=13 | | 8u^2+32u+24=0 | | Y=1.4+2,y | | 6x+7=6x+10 | | 7+78/f=9 | | 10+5x=66 | | 5*4.12310562562=x | | 10 + 5 x= 66 | | 3k^2-14k+13=0 | | n2+ 6.44= 9 | | -x-12=19 | | 4y+2-3=8 | | 12=5+9/w | | 127=6+11z |